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ABSTRACT

Large language models (LLMs) have demonstrated remarkable emergent capa-
bilities, reshaping the landscape of functional tasks by leveraging external tools
to tackle complex problems, such as those requiring real-time data or special-
ized input/output processing. Existing research primarily focuses on equipping
LLMs with a broader array of diverse external tools (e.g., program interpreters,
search engines, weather/map applications) but overlooks the necessity of tool us-
age, invoking external tools indiscriminately without assessing their actual need.
This naive strategy leads to two significant issues: 1) increased latency due to
prolonged processing times, and 2) potential errors arising from communication
between LLMs and external tools, resulting in faulty outputs. In this paper, we
introduce a concept we term meta-cognition as a proxy for LLM self-capability,
and we propose an adaptive decision-making strategy for invoking external tools,
referred to as MeCo. Specifically, MeCo focuses on representation space to cap-
ture emergent representations of high-level cognitive phenomena that quantify the
LLM’s meta-cognitive scores, thereby guiding decisions on when to use external
tools. Notably, MeCo is fine-tuning-free, incurring minimal cost, and our exper-
iments demonstrate that MeCo accurately detects the model’s internal cognitive
signals. More importantly, our approach significantly enhances decision-making
accuracy in tool use for multiple base models across various benchmarks.

1 INTRODUCTION

Equipping Large language models (LLMs) with tool learning capabilities represents a promising
paradigm to address complex tasks relying on external/real-time sources (Komeili, 2021; Tang et al.,
2023), specialized format/schema (Yang et al., 2023; Gao et al., 2023; Lu et al., 2024), domain-
specific knowledge (He-Yueya et al., 2023; Schick et al., 2024), and so on. Although existing re-
search has focused on increasing the number and types of tools available within this paradigm (Qin
et al., 2023; Hao et al., 2024) and optimizing their usage of these tools (Patil et al., 2023; Shen et al.,
2024), the decision-making process regarding when tools are necessary remains underexplored.

The prevailing strategy adopted by existing paradigms, which involves enhancing tool usage by fine-
tuning LLMs on carefully crafted datasets, is often hampered by the quality of these datasets. On the
other hand, if an LLM always relies on external tools to respond to user queries, it encounters two
notable limitations. Primarily, it leads to increased latency (Qu et al., 2024; Wang et al., 2024), as
using an external tool (e.g., search engine) can take significantly longer than leveraging the model’s
internal knowledge. Furthermore, the heavy reliance on external APIs and tools poses risks of
robustness and integration issues. It potentially introduces incorrect or inconsistent outputs when
tools malfunction (Qin et al., 2023) or are unnecessarily used (Lu et al., 2024; Wu et al., 2024).

To address aforementioned limitations by indiscriminate use of external tools, we propose an adap-
tive tool use strategy aimed at improving decision-making in LLMs concerning tool utilization. We
introduce a novel approach, termed MeCo, a Meta-Cognition-oriented trigger that facilitates more
judicious use of external tools. We define meta-cognition as the model’s ability to self-assess its
own capabilities and limitations, discerning whether it can address a user’s query independently or
if it needs to utilize external tools. Overall, MeCo integrates the following key principles:

1. Meta-Cognition-Oriented Trigger Mechanism: This core component ensures that LLMs main-
tain an ongoing assessment of their capabilities and limitations, enabling them to determine the
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Figure 1: Overview of MeCo: Learned Meta-Cognition determines the timing for function calls or
retrieval by using a trained meta-cognition probe to detect the internal state of an LLM.

necessity of external tools. This self-awareness is crucial for minimizing unnecessary tool invo-
cation and optimizing the model’s performance.

2. Effective Policy Utilization: Leveraging the meta-cognition evaluation, we implement a policy
that governs tool use based on quantified meta-cognition feedback. Our experimental results
demonstrate this policy’s superiority over existing methods in decision accuracy.

3. Generability: The ability of MeCo to generalize across various scenarios is validated empiri-
cally, ensuring its effectiveness and robustness in diverse operational environments. Moreover,
we treat adaptive Retrieval-Augmented Generation (RAG) as a specific instance of tool utilization
and validate the effectiveness of MeCo on adaptive RAG against baseline methods.

Building on our initial proposal of an adaptive tool use strategy for LLMs, we detail the development
of a computationally efficient plug-in module designed to assess the meta-cognitive states of LLMs.
Leveraging the Representation Engineering (RepE) framework (Zou et al., 2023), known for its ef-
fectiveness in identifying internal concepts such as honesty and confidence within LLMs, we applied
this methodology to detect signals associated with meta-cognition. Our analysis indicates that meta-
cognition can generate a strong signal which can be further used to enhance the interpretability of
decisions made by LLMs. As illustrated in Figure 1, our strategy dictates that LLMs should engage
external tools only when the complexity of a user query surpasses the model’s inherent capabilities;
otherwise, they should rely on their internal knowledge. Specifically, we establish two thresholds
for a given task: one discriminates between strong and weak meta-cognition signals for affirma-
tive responses (“Yes”), and another differentiates these signals for negative responses (“No”). This
dual-threshold approach allows us to refine the model’s decision-making process, particularly when
meta-cognitive signals are weak, suggesting uncertainty or insufficient knowledge.

In summary, our contributions are four-fold: 1) We introduce the concept of adaptive tool use,
which enhances both the efficiency and robustness of existing tool learning paradigms in LLMs. 2)
We integrate adaptive tool use and adaptive RAG within a unified framework, with their activation
driven by a shared strategy based on meta-cognition detection. 3) We provide a benchmark, MeCa,
to evaluate the effectiveness of our method. 4) We empirically demonstrate that MeCo significantly
enhances the model’s awareness in tool utilization and RAG processes.

2 BACKGROUND

Recent research has delved into the internal representations of LLMs to gain insights into their be-
liefs and interpretability (Bricken et al., 2023; Levinstein & Herrmann, 2024). Studies such as those
by Zou et al. (2023) and Liu et al. (2023a) have demonstrated that specific features and signals (e.g.,
happiness, honesty, and confidence) align with distinct directions within the LLM’s representation

2
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Figure 2: Pipeline for training the meta-cognition probe.

space, making them linearly separable. Figure 2 illustrates the main steps in the pipeline for training
various types of probes. To effectively capture and detect these signals, we can utilize contrastive
instruction pairs to implicitly induce the emergence of these contrastive signals.

Building on these insights, we enable the capturing and controlling of high-level functions f such as
honesty in the model responses. We follow Zou et al. (2023) to design an experimental prompt T+

f

that necessitates the execution of the function and a corresponding reference prompt T−
f that does

not require the function’s execution. An example instruction template might resemble the following:

USER: ⟨ instruction ⟩ ⟨ experimental/reference prompt ⟩
ASSISTANT: ⟨ output ⟩

For a function f and a language model M , given the instruction response pairs (qi, ai) in the set S
and denoting a response truncated after token k as aki , we collect two sets of internal representations
corresponding to the experimental and reference sets:

A±
f =

{
Rep(M,T±

f (qi, a
k
i ))[−1] | (qi, ai) ∈ S, for 0 < k ≤ |ai|

}
(1)

where Rep represents the representation obtaining operation, [−1] denotes the last token representa-
tion of ak, and A±

f are the resulted activations consist of individual vectors.

Our goal is to learn a linear model to identify a direction that predicts the function A±
f based solely

on the model’s internal representations. Specifically, we apply PCA (Maćkiewicz & Ratajczak,
1993) in an unsupervised manner to pair-wise difference vectors. The first principal component vf ,
referred to as the reading vector or probe, predicts the function’s direction in the model’s response.
Equation 1 is applied at each layer of M to derive layer-wise probes which are then used to interact
with the LLM’s representations to monitor and control its behavior.

3 APPROACH

In the context of tool use in LLMs, meta-cognition refers to the model’s ability to self-assess its
own capabilities and limitations to determine whether it can address a user query independently or
if it needs to engage external tools. This self-assessment involves evaluating the complexity and
requirements of the query in relation to the model’s internal knowledge and functions. To quantify
meta-cognition, we train a probe that detects the model’s level of meta-cognitive awareness. This
probe evaluates the rationale behind the model’s decision-making process, providing a score that
reflects the model’s self-assessment accuracy.

For instance, when the model receives a complex mathematical query, the meta-cognition probe eval-
uates whether it should solve it independently or use an external calculator. A high meta-cognition
score indicates that the model accurately recognizes its capabilities or limitations and makes the cor-
rect decision, whether to use the tool or not. A low score indicates that the model either incorrectly
attempts the task itself or unnecessarily uses the tool.

3
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3.1 META-COGNITION PROBE EXTRACTION

The data required to train the meta-cognition probe differs significantly from that used to train the
concept such as “honesty” and “confidence” probes. The latter typically involves true-false state-
ments about facts, such as “fire needs oxygen to burn” and “oxygen is harmful to human breathing.”
These statements are independent of user queries, meaning the model will produce the same state-
ments regardless of the user query.

In contrast, detecting the model’s internal cognition regarding whether external tools are needed re-
quires query-dependent responses. To achieve this, we employ leading proprietary LLM to generate
user queries related to tool use and their corresponding responses (i.e., Yes/No responses with brief
explanations). We then construct the training dataset following the procedures outlined in Section 2.
It is important to note that only a small number of queries and responses are enough to train a probe
with good performance. The analysis of the relationship between probe performance and the size
of the training data is provided in Appendix D. Specifically, after collecting the instruction response
pairs (qi, ai), where i denotes the index of the queries. We gather the sets of internal representa-
tions from the paired data and compute A±

f according to Eq. 1, and then apply PCA to the input
{(−1)i(A+

f,i −A−
f,i)} to obtain the first principal component νf as the meta-cognition probe.

Figure 3: Comparison between different probes.
Note that -1 means the last layer in the LLMs.

After the above training procedures, we will
have a probe at each layer in the LLMs (e.g., 32
probes for Llama-3-8b models) to detect the
meta-cognition signal. We compare the meta-
cognition probe with other types of probes that
have appeared in existing research, honesty
probe Zou et al. (2023) and confidence probe
Liu et al. (2024a). We compare the interme-
diate classification accuracy (in distinguishing
between held-out examples where the model
is instructed to be honest/confident/have strong
meta-cognition or dishonest/unconfident/have
weak meta-cognition) of the probes and illus-
trate the results in Figure 3. Notably, the meta-
cognition probe achieves near-optimal accuracy
and significantly outperforms its predecessors.

3.2 DECISION-MAKING STRATEGY BASED ON META-COGNITION

After developing accurate probes to detect the model’s internal meta-cognition, we design a
decision-making strategy utilizing these detection results. Given a user query, the LLM generates a
response consisting of m tokens, each associated with a meta-cognition score for every layer in the
LLM. This yields a meta-cognition detection array with dimensions (m,n), where n represents the
number of layers in the LLM. Our objective is to make a final decision-“Yes”, indicating the need
to use external tools or RAG, and “No”, indicating that LLMs can respond directly without external
tools or RAG)-based on this result array.

Reducing m to 1. We examine various prompting strategies (detailed in Appendix C) and find
that the Yes/No+Explanation strategy, where the model answers with “Yes” or “No” followed by
a brief explanation, yields the best performance. Therefore, we focus on the first token of the
model’s response as it provides a clear signal of whether the model decides to rely on external tools.
Extracting the meta-cognition score of the first token to represent the whole response simplifies our
decision-making process, as calculating an overall meta-cognition score for the entire response is
challenging due to varying response lengths and content across different queries. Since the model
always responds with “Yes” or “No” as the first token, basing the trigger mechanism on the first
token’s meta-cognition score is both reasonable and practical.

Reducing n to 1. We select a single probe from the multiple trained probes across different layers
to assign the final meta-cognition score to a token. In Zou et al. (2023) and Huang et al. (2023), a
mean score from multiple probes’ results is usually used to represent the token’s final quantification.
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However, our experiments show that scores predicted by different probes vary significantly, and
simply averaging multiple scores does not yield accurate results. We found that probes in shallower
layers (e.g., layer -5 to -2) tend to be more effective, with appropriate score distributions, ranges, and
lower variances. Therefore, we use the probe with the highest classification accuracy in the layer -5
to -2 (as shown in Figure 3), as our final probe and rely on its prediction results.

After reducing the meta-cognition results into one scalar value, we adopt the thresholding strategy
depicted in Figure 1 to find the optimal thresholds for lyes and lno based on the validation data,
which are then applied to the test data.

4 BENCHMARK-MECA

Benchmark Domains: We evaluate MeCo using a public benchmark: Metatool (Huang et al.,
2023). In addition, we introduce a new benchmark, named Meta-Cognitive Tool Assessment
(MeCa), where each query underwent a thorough human review. MeCa expands on Metatool by
incorporating a broader range of scenarios for assessing tool usage. We also include tasks to evaluate
adaptive RAG in MeCa. Below are the details of these two benchmarks.

Metatool: Metatool consists of 1,040 queries designed to assess whether LLMs can recognize when
to rely on external tools to solve user queries that they cannot address directly. The tool names and
descriptions in Metatool are retrieved from OpenAI’s plugin list (OpenAI, 2023), and there are 166
distinct tools in the benchmark. Metatool primarily focuses on evaluating the model’s awareness of
tool usage for individual tools, where LLMs are provided only with a user query and must indepen-
dently decide whether or not to resort to external tools without any tool names or descriptions.

Metatool is limited to evaluating user queries without any supplementary information or tool provi-
sions, real-world tasks typically involve more complex intents and a diverse array of requirements.
To more accurately reflect these multifaceted scenarios, we developed a new benchmark named
MeCa. This benchmark is divided into two main components: Tool and RAG. Each query is rigor-
ously reviewed by humans to ensure data quality and relevance. MeCa provides several significant
improvements over Metatool:

MeCa-Tool was meticulously designed to evaluate scenarios where the invocation of external tools
is either necessary or unnecessary. MeCa-Tool is segmented into the following main categories:

• Tool Usage Assessment. This category expands the Metatool to evaluate the decision-making
capability of the LLM regarding tool usage in more comprehensive scenarios, specifically whether
to invoke any external tools. It includes:

– Queries that can be handled by the LLM’s internal capabilities without external tools.
– Queries that necessitate the use of one or more external tools, indicating tasks beyond the

LLM’s standalone capacity.

• Provided Tool Evaluation. In this category, the LLM assistant is provided with available tools
alongside the user query, with the task of determining tool usage based on the tools’ relevance and
necessity:

– Cases where the external tools are unnecessary and the LLM assistant can successfully re-
solve the queries independently.

– Situations where external tools are essential and are provided, enabling the LLM assistant to
effectively address the user queries.

– Instances where the required tools to solve the queries are absent from the provided list.

• Multi-turn Interaction. This category evaluates the LLM’s decision-making regarding tool usage
in multi-turn dialogues, involving extended interactions and long context accumulation. This
setup tests the LLM’s adaptability and decision-making in complex, evolving scenarios that also
encompass the aforementioned categories

Based on the main categories outlined, MeCa-Tool offers a broader and more varied test set com-
pared to Metatool by integrating diverse scenarios through combinations of these main categories.
Specifically, the final configuration covers 6 tasks with 7,000 queries. Please refer to Table 4 in

5
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Appendix A for more details about MeCa. To curate the MeCa-Tool dataset, we employed a metic-
ulous and structured approach that ensures the queries are relevant to current LLM capabilities. The
process unfolded as follows:

1. Collection of diverse scenarios: We began by gathering a broad spectrum of domains and con-
versational scenarios from various online corpus. This initial step ensures that the subsequent
generated synthetic APIs and conversations are grounded in realistic and diverse settings.

2. Synthetic APIs design: Leveraging the collected scenarios, we then synthetically design 500
distinct APIs by emulating examples found in real-world applications, ensuring that they span
multiple domains.

3. Query generation: For each query, APIs are randomly sampled from our synthetic APIs pool.
User queries are then constructed based on sampled APIs, which may: (i) Require the invocation
of the provided APIs; (ii) Not require any tool invocation, relying solely on the LLM’s internal
knowledge; or (iii) Involve cases where the provided APIs does not include the necessary tools
to answer the query directly.

4. Human Verification: After the queries were constructed, they underwent a rigorous human review
process. This critical step verified the validity and correctness of the data, ensuring that each
query aligns with its intended category and meets quality standards.

Furthermore, as noted in our paper, this work aligns with the emerging trend of adopting an adaptive
RAG (Retrieval-Augmented Generation) paradigm, which aims to determine whether a query can
be answered directly by the LLM or necessitates external data retrieval. This is because RAG can
be viewed as a special case of tool usage, where the LLM’s internal knowledge or capabilities are
insufficient to address the query, requiring access to external datasets through retrieval tools.

MeCa-RAG The “RAG” component was specifically designed to evaluate whether and when re-
trieval is necessary.

• Positive RAG: cases where the LLM assistant needs to perform retrieval to answer complex
queries or queries involving the latest information that LLMs do not have.

• Negative RAG: cases where the LLM assistant can directly respond to simple queries using its
internal knowledge, without the need for retrieval.

The dataset was constructed as follows: we selected a subset of fact-based data from the RepE
dataset (Zou et al., 2023), which consists of common, well-known facts, such as “The Earth or-
bits the Sun.” These facts were used as model responses, and the leading proprietary LLM (i.e.,
GPT-4-turbo) was instructed to generate corresponding user queries. Since these queries involve
common knowledge that is embedded in LLMs, they do not require retrieval and thus serve as nega-
tive RAG examples. For positive RAG examples, we scraped recent news articles from the past few
months, ensuring that this content has not been seen by LLMs. We then followed a similar process
as mentioned above to generate user queries based on the latest information. This process resulted
in queries that require retrieval as they involve knowledge that is unknown or not yet integrated into
the LLM’s training data. The detailed distribution of MeCa can be found in Figure 4.

5 EXPERIMENT SETUP

Baselines: We evaluate the proposed MeCo against two baselines: Naive and PYes. The Naive
baseline determines a “Yes” or “No” based solely on the first token generated by the LLM, where
“Yes” represents a positive indication, i.e., requiring external tools, and vice versa. In the PYes
baseline, we compute a Yes-score, as outlined in Equation 2, which offers a more refined measure of
the model’s confidence compared to the binary Naive approach. Note that the Yes-score ranges from
0 to 1, where 0 represents full “No” and 1 denotes full “Yes”. The proximity of the Yes-score to 0.5
indicates a lower certainty in the model’s response, as scores around this midpoint reflect ambiguity
in decision-making. PYes can adjust the model’s output in cases where the Yes-score is near 0.5 to
enhance the accuracy of both tool use and retrieval timing. Refer to Section C.2 for more details.

Yes-score =
P (Yes | Prompt)

P (Yes | Prompt) + P (No | Prompt)
(2)

6
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Figure 4: Overview of Benchmarks: Distribution of Metatool, MeCa-Tool, and MeCa-RAG Cate-
gories. The Metatool and MeCa-Tool datasets include test data on tool use timing, while the MeCa-
RAG dataset focuses on the timing of RAG interactions.

Backbone LLMs: We evaluate two widely-used LLMs, i.e., Llama-3-8b-Instruct and
Mistral-7b-Instruct-v0.3. Additionally, to assess the effectiveness of MeCo on larger
LLMs, we conducted experiments on Llama-3-70b-Instruct. For conciseness, we refer to
them as Llama-3-8b, Llama-3-70b, and Mistral-7b throughout the paper, respectively. We also fine-
tune these models with data generated by leading proprietary LLM, and the fine-tuned models are
denoted as Llama-3-8b-sft, Llama-3-70b-sft, and Mistral-7b-v0.3-sft, respectively.

Evaluation: Our experiments primarily focus on the overall accuracy of decisions regarding the
necessity of tool use. A tool use decision is considered correct if the query genuinely requires
external tools and incorrect otherwise. An analysis of additional performance metrics (including
precision, recall, etc.) is provided in Appendix C.

Prompt: We explored various prompting strategies, including “Yes/No” responses with or without
explanation and the Chain of Thought (CoT; Wei et al. (2022)) approach. Our findings indicate
that instructing the model first to provide a “Yes” or “No” response followed by an explanation
yields better results than other strategies, including the CoT approach. Detailed results for different
prompting strategies are available in Appendix C. Consequently, all experiments in this paper utilize
the “Yes/No + Explanation” prompting strategy.

Moreover, we employ two types of prompts in our experiments: 1) prompts with context, which
provide specific reasons for why LLMs may require external tools to complete user tasks. These
prompts also include five randomly sampled examples to assist the model in making decisions; and
2) prompts without context, which are more concise and contain only the instruction and query. The
exact prompts and additional details about the prompt settings can be found in Appendix D.

6 EXPERIMENTS

We conduct extensive experiments to empirically reveal the effectiveness of the proposed MeCo on
two benchmarks: Metatool and MeCa. Specifically, we evaluate MeCo in adaptive tool use on both
Metatool and MeCa and in adaptive RAG on MeCa.

6.1 MECO IN ADAPTIVE TOOL USE

First, we present the distribution of meta-cognition scores collected from the pre-fine-tuning model
and post-fine-tuning model in Figure 5. We compare the meta-cognition scores for correct and in-
correct responses and visualize how these scores differentiate between correct and incorrect Yes/No
answers. Our key observations and interpretations are as follows:

Clear Gap in Meta-Cognition Scores: In both pre-fine-tuning and post-fine-tuning experiments,
there is a noticeable gap between the meta-cognition scores of correct and incorrect responses. Our

7
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decision-making strategy can identify and leverage this gap to distinguish between correct and in-
correct Yes/No answers.

Higher Scores for Correct Yes, Lower for Correct No: The meta-cognition scores for correct
Yes responses are generally higher than those for incorrect Yes responses. Conversely, the meta-
cognition scores for correct No responses are typically lower than those for incorrect No responses.
This occurs because the meta-cognition score for Yes/No tokens depends on the token embedding.
Therefore, the meta-cognition scores of different tokens are not directly comparable; the score of
Yes should only be compared to other Yes scores, and the score of No should only be compared to
other No scores.

(a) Correct Yes/No (b) Correct/Incorrect Yes (c) Correct/Incorrect No

(d) Correct Yes/No (e) Correct/Incorrect Yes (f) Correct/Incorrect No

Figure 5: Distribution of meta-cognition scores of the first token in model responses. (a), (b), and (c)
are from Llama-3-8b, while (d), (e), and (f) are from Llama-3-8b-sft (post-fine-tuning). The scores
are derived from the train data in Metatool, using prompts without context.

Table 1: Performance Comparison between Naive, PYes and MeCo on Metatool. Note that we are
unable to calculate PYes or detect the internal states of proprietary LLMs such as GPT-4-turbo.

LLM Method Pre Fine-tuning Post Fine-tuning
With Context Without Context With Context Without Context

Llama-3-8b
Naive 61.9% 58.3% 82.1% 80.8%
PYes 63.5% 62.7% 81.7% 80.8%
MeCo 65.0% 74.0% 84.3% 82.3%

Llama-3-70b
Naive 84.6% 68.8% 86.0% 77.7%
PYes 84.8% 73.7% 86.2% 77.1%
MeCo 85.4% 79.6% 87.3% 81.2%

Mistral-7b
Naive 69.0% 68.5% 89.2% 86.0%
PYes 71.2% 73.1% 89.2% 85.0%
MeCo 75.4% 74.7% 90.2% 86.5%

GPT-4-turbo - 84.4% 61.3% - -

8
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Table 2: Performance Comparison between Naive, PYes and MeCo on MeCa-Tool.

Task Model Method Pre Fine-tuning Post Fine-tuning
with context without context with context without context

Task1

Llama-3-8b
Naive 70.0% 65.0% 69.0% 80.0%
PYes 74.0% 67.0% 70.0% 78.0%
MeCo 79.0% 72.0% 69.0% 80.0%

Mistral-7b
Naive 54.0% 63.0% 68.0% 64.0%
PYes 54.0% 63.0% 69.0% 63.0%
MeCo 58.0% 67.0% 71.0% 66.0%

Task2

Llama-3-8b
Naive 62.3% 80.3% 53.3% 61.0%
PYes 78.0% 80.7% 58.3% 68.7%
MeCo 80.1% 81.3% 59.9% 70.3%

Mistral-7b
Naive 42.3% 55.7% 52.3% 53.0%
PYes 45.0% 60.0% 55.3% 62.3%
MeCo 66.7% 66.0% 60.7% 66.3%

Task3

Llama-3-8b
Naive 54.3% 78.7% 59.0% 68.7%
PYes 66.0% 81.3% 57.7% 70.0%
MeCo 73.3% 79.5% 60.0% 73.4%

Mistral-7b
Naive 55.7% 67.3% 58.3% 73.7%
PYes 56.7% 70.7% 61.0% 75.0%
MeCo 74.8% 78.3% 65.7% 82.0%

Task4

Llama-3-8b
Naive 66.0% 50.0% 74.0% 77.0%
PYes 66.0% 62.0% 75.0% 77.0%
MeCo 69.0% 69.0% 75.0% 84.5%

Mistral-7b
Naive 60.5% 70.0% 92.5% 77.5%
PYes 66.5% 71.0% 92.5% 80.5%
MeCo 69.0% 78.5% 95.0% 87.0%

Task5

Llama-3-8b
Naive 70.5% 54.0% 71.0% 78.5%
PYes 72.0% 71.5% 80.5% 84.0%
MeCo 74.0% 78.5% 79.5% 82.0%

Mistral-7b
Naive 73.5% 76.0% 87.5% 82.0%
PYes 73.0% 76.0% 87.5% 83.0%
MeCo 76.2% 80.0% 88.0% 82.0%

Task6

Llama-3-8b
Naive 60.5% 53.5% 78.5% 83.0%
PYes 62.0% 64.5% 81.5% 82.0%
MeCo 63.5% 67.0% 80.0% 86.5%

Mistral-7b
Naive 73.0% 62.5% 85.0% 70.5%
PYes 73.5% 63.0% 86.5% 78.0%
MeCo 74.0% 65.5% 88.0% 80.5%

In our experiment, we sampled a subset of queries from the Metatool benchmark to create training
data for determining the optimal thresholds for PYes and MeCo. We then applied these thresholds
to the test queries in both Metatool and MeCa-Tool (Task1 and Task4). Due to the fundamental
difference between the queries in Metatool and those in Task 2, Task 3, Task 5, and Task 6 in
MeCa-Tool, we randomly sample 100 queries from each of these categories to serve as hold-out
testing data. We fit the thresholds for both PYes and MeCo using the remaining data. The complete
evaluation results are summarized in Table 1 and Table 2. Our key observations are as follows:

Superiority of MeCo: On both benchmarks, MeCo significantly enhances the model’s naive de-
cision accuracy regarding tool use, outperforming PYes by a considerable margin, indicating the
effectiveness of the meta-cognition-based trigger mechanism. Notably, MeCo’s superiority is con-
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sistent across multiple backbone models and various evaluation settings, including both with and
without context, as well as pre- and post-fine-tuning.

Importantly, the improvement achieved with MeCo incurs minimal costs, as it involves a fine-tuning-
free and easy-to-integrate module. Note that fine-tuning and MeCo are two orthogonal approaches,
and MeCo can provide additional benefits to fine-tuned models. Moreover, fine-tuned models do
not transfer well to “out-of-distribution” testing scenarios. For instance, we observed performance
degradation in the fine-tuned Llama-3-8b on Task 2 and Task 3 of MeCa-Tool. In contrast, the
improvement brought by MeCo is consistent and robust across various testing scenarios.

MeCo’s superiority on MeCa is particularly promising and significant. MeCa contains more com-
plex and realistic queries and user-assistant interactions, closely mimicking real-world scenarios.
This underscores MeCo’s applicability to real-world LLMs, highlighting its potential for practical
deployment and effectiveness in diverse and realistic scenarios.

Transferability: The results of Task1 and Task4 in Table 2 indicate that PYes and MeCo, when fitted
on one benchmark, can effectively transfer to other benchmarks. It’s worth noting that Metatool and
MeCa feature different tool sources and styles of queries. We hypothesize that the model’s internal
cognition is model-dependent, and once fitted on one benchmark, the decision strategy (i.e., the
thresholds) can be transferred to other testing datasets. Although it is always better to align the
decision strategy with real testing data, MeCo demonstrates satisfactory performance even when
directly transferred, highlighting its robustness and adaptability.

6.2 MECO IN ADAPTIVE RAG

Table 3: Performance Comparison between
Naive, PYes and MeCo on MeCa-RAG.

Model Method Accuracy

Llama-3-8b
Naive 63.0%
PYes 75.0%
MeCo 76.0%

Mistral-7b
Naive 84.0%
PYes 84.0%
MeCo 86.0%

GPT-3.5-turbo - 86.0%

GPT-4-turbo - 84.0%

We further evaluate the effectiveness of MeCo
in the adaptive RAG task, where the LLMs need
to determine whether or not to retrieve exter-
nal information to address the user query. Typ-
ically, no reasons or examples are provided to
the LLMs in adaptive RAG, and we follow this
setting by providing no context in the prompts.
The results in Table 3 further validate the ef-
fectiveness of MeCo in the adaptive RAG task,
demonstrating its robustness as a trigger mech-
anism across various applications. Note that
GPT-4-turbo has more up-to-date information
and thus does not perform RAG as often as
GPT-3.5-turbo and results in a lower accuracy
on our benchmark.

7 CONCLUSION

In this paper, we introduce the concept of adap-
tive tool use to advance existing tool learning paradigms, which typically rely on external tools
without discrimination to address user queries. Drawing on insights from representation engineer-
ing, we develop a computationally efficient plug-in module, MeCo, that assesses the meta-cognitive
states of LLMs. Our approach utilizes a meta-cognition probe to detect signals associated with
meta-cognition, and leverages these quantification results to inform a decision-making strategy that
enables LLMs to make more accurate determinations about when to invoke external tools. To sup-
port evaluation, we introduce a new benchmark, MeCa, specifically designed to evaluate LLMs’
awareness of tool use as well as the timing for retrieval. We empirically validate the effectiveness of
MeCo using both the Metatool and MeCa, demonstrating significant improvements in the model’s
decision-making accuracy regarding the timing for tool use and retrieval. Our findings suggest that
by integrating meta-cognition into the tool usage framework, we can enhance the operational effi-
ciency and decision-making capabilities of LLMs across diverse contexts.
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A MECA STATISTICS

Table 4 summarizes the statistics of the MeCa. In Task1 and Task4, the positive queries require a
specific external tool to address the user queries, while the negative queries require no external tools
and can be solved by the LLM’s internal capabilities. In Task2 and Task5, we provide a tool name
and its description along with the user query, asking the LLMs to determine whether they need to
use this specific tool to address the user queries. The neutral queries in Task2 and Task3 indicate that
these queries require external tools, but the provided tool is irrelevant to addressing the user query.
In Task3 and Task6, we provide a list of tools (ranging from 2 to 5) along with the user query. For
multi-turn queries, there is a dialogue between the user and the LLM assistant, where the assistant
needs to determine whether it should rely on external tools to address the user query in the final
round of the conversation.

Table 4: Tool Usage Categories and Counts

Task Category Count

MeCa-Tool-Task1 Positive queries without tools 500
Negative queries without tools 500

MeCa-Tool-Task2
Positive queries with relevant tools 500
Negative queries with tools 500
Neutral queries with irrelevant tools 500

MeCa-Tool-Task3
Positive queries with a tool list 500
Negative queries with a tool list 500
Neutral queries with a tool list 500

MeCa-Tool-Task4 Multi-turn Negative queries without tools 500
Multi-turn Positive queries without tools 500

MeCa-Tool-Task5 Multi-turn Positive queries with relevant tools 500
Multi-turn Negative queries with tools 500

MeCa-Tool-Task6 Multi-turn Positive queries with a tool list 500
Multi-turn Negative queries with a tool list 500

MeCa-RAG Positive RAG 150
Negative RAG 150

We directly transfer the lyes and lno thresholds of MeCo, fitted on the Metatool dataset, to Task1 and
Task4 in MeCa-Tool, and present the results in Table 2. Because the rest of the tasks in MeCa-Tool
are very different and more complex than the user queries in MetaTool, we randomly sample 100
queries from each category in Task2, Task3, Task5, and Task6, and use these queries as the hold-out
testing data. We use the remaining data to fit the thresholds for Pyes and MeCo. The complete
evaluation results are presented in 2.

B RELATED WORK

Tool Use in LLMs LLMs have progressed from understanding and generating human-like text to
utilizing external tools based on natural language instructions. This evolution expands their appli-
cation beyond basic conversational tasks to enable dynamic interactions across diverse functional
domains, such as facility management and professional services (Patil et al., 2023; Liu et al., 2023b;
Qin et al., 2023; Chen et al., 2023). For example, Toolformer (Schick et al., 2024) enables LLMs
to use external tools via simple APIs through a supervised fine-tuning (SFT) model. Liu et al.
(2024c) demonstrate strong executable functional API calls across different domains. ToolACE (Liu
et al., 2024b) trained on synthesized data, achieves state-of-the-art results on the Berkeley Function-
Calling Leaderboard (Yan et al., 2024), even with a relatively small model size of 8B parameters.
Despite their growing popularity and capabilities, tool use in LLMs often depends on strategies like
verbal feedback, which are hampered by the quality of the datasets used for fine-tuning. Several
benchmarks/datasets have been developed to support tool use in a data-centric way, such as API-
Bank (Li et al., 2023), which provides a set of tool-use dialogues with various APIs to assess the
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LLM’s tool use capabilities, Toolalpaca (Tang et al., 2023) constructs a comprehensive tool-use cor-
pus derived from collected real-world APIs, designed specifically to fine-tune LLMs for better tool
utilization. ToolBench (Qin et al., 2023) focuses on creating a synthetic instruction-tuning dataset
for tool use. However, these methods rely solely on superficial textual information, without probing
deeper into the LLM’s internal states to explain or justify when and why a tool should be called,
resulting in an inability to accurately determine the optimal timing for tool invocation.

Adaptive RAG RAG has shown success in supporting AI systems that require up-to-date informa-
tion or access domain-specific knowledge, particularly where the scope of queries is not seen in the
training data of LLMs (Lewis et al., 2020; Ren et al., 2023; Vu et al., 2023; Izacard et al., 2023). This
paper is also consistent with the trend of towards adaptive RAG paradigm, which is designed to as-
sess whether a query can be directly answered by the LLMs or requires external data retrieval (Asai
et al., 2023; Jiang et al., 2023). Specifically, a simple query within the LLM’s knowledge should
be directly answered by the LLMs themselves. On the other hand, for complex queries or questions
about data they have not been trained on, RAG intervenes to prevent incorrect out-of-date answers or
hallucination (Ji et al., 2023). This mechanism allows RAG to dynamically adjust operational strate-
gies of retrieval-augmented LLMs by assessing the boundary of LLM’s self-knowledge and the com-
plexity of the query, thereby minimizing unnecessary computational overhead when the queries are
answerable by LLMs themselves. Similar to the LLMs’ function-calling, the decision of retrieval
timing typically hinges on three primary methods: (i) explicit verbal feedback from LLMs (Ding
et al., 2024), (ii) enhancements through fine-tuning (Asai et al., 2023), or (iii) probability-based
metrics (Kadavath et al., 2022; Jiang et al., 2023). Specifically, He et al. (2021) proposed enhancing
the retrieval time efficiency by computing the probability of the next token via interpolating an LLM
with a distribution calculated from the k nearest context-token pairs. Drozdov et al. (2022) further
extend kNN-LM to the adaptive paradigm by assigning the interpolation coefficient according to the
retrieval quality measured by semantic similarity. Asai et al. (2023) introduce Self-RAG to improve
generation quality and factuality by enabling adaptive retrieval and self-reflection. In contrast, this
paper conceptualizes RAG as an external tool and highlights the importance of understanding the
internal states of an LLM when developing the retrieval policy.

Explainability of LLMs However, there is a considerable discrepancy between LLM’s decision
mechanisms (often based on verbalized responses) and their internal cognition (Zou et al., 2023).
The internal workings of LLMs are usually unclear, and this lack of transparency poses unwanted
risks in downstream decision-making. Therefore, understanding and interpreting LLMs is crucial for
elucidating their behaviors and limitations. To address this challenge, various explanations that pro-
vide insights into the inner workings of LLMs have been proposed (Zhao et al., 2024): (i) Probing-
based explanations: Probing uses vector representations to measure embedded knowledge (Peters
et al., 2018; Jawahar et al., 2019) or examines specific knowledge during the LLM’s generation
process (Li et al., 2022), (ii) Neuron-level explanation: neuron analysis identifies critical neurons
that are essential for model’s performance (Antverg & Belinkov, 2021; Bills et al., 2023), (iii) rep-
resentation engineering (RepE): RepE leverages techniques inspired by cognitive neuroscience to
identify and enhance the transparency of LLMs by uncovering their internal cognitive states (Zou
et al., 2023). In this paper, we aim to detect the internal cognition of LLMs, and intervene LLM’s
decisions, i.e., ensuring more precise decisions on tool use and retrieval timing.

C EXTENDED RESULTS

C.1 PROMPTING STRATEGIES

To determine the best prompting strategy for tool use, we explore five prompting strategies with
multiple base models. The results are summarized in Table 5.

1. Yes/No + Explanation: The model first answers with ”Yes” or ”No” and then provides a
brief explanation for its decision.

2. Yes/No: The model answers solely with ”Yes” or ”No,” without providing any explanation.

3. No/Yes + Explanation: The model first answers with ”No” or ”Yes” and then provides a
brief explanation for its decision.
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4. No/Yes: The model answers solely with ”No” or ”Yes,” without providing any explanation.

5. CoT (Chain of Thought): The model is instructed to think step-by-step, reasoning why it
does or does not need external tools to address the user query, and finally concludes its
decision with “Yes” or “No.”

Chain of Thought Prompting.

You are an intelligent agent, and you need to constantly be aware of your own limitations. I
will provide you with a user’s query, and you should assess, based on your own capabilities,
whether you need to use external tools to better address the user’s query. Typically, there are
four reasons why you might need to use external tools:

• A. Solving issues with real-time or external data, databases, or APIs
• B. Handling specialized inputs/outputs
• C. Enhancing domain tasks beyond LLM’s capabilities
• D. User customization, personalization, and interaction

Please think step by step, and provide a brief explanation for your decision at first. At last,
please conclude with “Yes” if you need to use external tools, or “No” if you do not need
external tools.

{Few-shot Examples}

User query: {query}

Answer:

Note that there are no results for the CoT prompting strategy for the
Mistral-7b-instruct-v0.3 model. Regardless of the prompts used, the model con-
sistently responds with “Yes/No” at the beginning, followed by an explanation of its decision. This
behavior effectively mirrors the Yes/No+Explanation prompting strategy. Based on Table 5, we
make the following observations and provide corresponding analysis:

1. Yes/No + Explanation generally performs the best out of the five prompting strategies. This
approach provides a clear decision followed by reasoning, enhancing the model’s reliability
and user trust.

2. CoT is not performing as well as expected. Through close human examination, we found
that CoT results in long, complex answers where the model might ultimately conclude
with a decision that contrasts with its prior reasoning process. This phenomenon is referred
to as reasoning inconsistency, a challenge also reported in the literature(Wei et al., 2022;
Lyu et al., 2023). Specifically, LLMs sometimes generate the correct answer following an
invalid reasoning path or produce a wrong answer after a correct reasoning process, lead-
ing to inconsistency between the derived answer and the reasoning process. In contrast,
the ”Yes/No-Explanation” prompting strategy does not suffer from this reasoning inconsis-
tency in our experiments, thereby achieving better performance compared to CoT.

3. Yes/No prompting strategy works better than No/Yes prompting. We hypothesize this
phenomenon is due to the data format in the pre-training data. For example, there are
likely many more Yes/No answers and reasoning processes in the training data compared
to No/Yes answers, influencing the model’s performance.

We adopt Llama-3-8b-instruct and Mistral-7b-instruct-v0.3 as our back-
bone models because they exhibit strong performance in adaptive tool use. We exclude
Llama-2-7b-chat due to its poor performance and lack of discernment regarding the neces-
sity of external tools. Additionally, we exclude Llama-3.1-8b-instruct as its performance
is almost identical to that of Llama-3-8b-instruct.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 5: Performance Comparison of Different Prompting Strategies

Model Prompting Strategies Accuracy Precision Recall F1 Score

Llama-2-7b-chat

Yes/No+Explanation 0.51 0.51 1.0 0.67
Yes/No 0.51 0.5 1.0 0.67
No/Yes+Explanation 0.52 0.51 1.0 0.67
No/Yes 0.51 0.5 1.0 0.67
CoT 0.51 0.5 0.99 0.67

Llama-3-8b-instruct

Yes/No+Explanation 0.72 0.82 0.57 0.67
Yes/No 0.63 0.61 0.72 0.66
No/Yes+Explanation 0.52 0.51 0.99 0.67
No/Yes 0.5 0.5 1.0 0.67
CoT 0.62 0.59 0.84 0.69

Llama-3.1-8b-instruct

Yes/No+Explanation 0.71 0.66 0.87 0.75
Yes/No 0.64 0.59 0.95 0.73
No/Yes+Explanation 0.57 0.54 0.97 0.69
No/Yes 0.53 0.51 0.99 0.68
CoT 0.63 0.62 0.91 0.71

Mistral-7b-instruct-v0.3

Yes/No+Explanation 0.74 0.68 0.89 0.77
Yes/No 0.70 0.64 0.92 0.75
No/Yes+Explanation 0.70 0.64 0.88 0.74
No/Yes 0.71 0.57 0.82 0.74

C.2 P(YES) APPROACH

The PYes baseline introduces a Yes-score, as defined in Equation 2. This score provides a nuanced
measure of the model’s confidence, refining the binary approach taken by the Naive baseline. The
Yes-score spans from 0 to 1, where a score of 0 signifies a definite ”No” and a score of 1 signifies
a definite “Yes”. Scores close to 0.5 reflect lower certainty in the model’s response, signifying
ambiguity in decision-making. By adjusting the model’s output in cases where the Yes-score is near
0.5 to always “Yes/No” answer, we aim to enhance the accuracy of both tool use and RAG timing.
We employ 3 to determine the optimal threshold l for the Yes-score based on training data, which is
then applied to the test data.

Decision =

{
Yes if Yes-score > l

No if Yes-score ≤ l
(3)

C.3 DISTRIBUTION OF P(YES) AND META-COGNITION SCORES

Before delving into the analysis, we provide some background on the concept of calibration in the
context of Large Language Models (LLMs). Calibration refers to the alignment between a model’s
predicted probabilities and the actual likelihood of those predictions being correct. A well-calibrated
model generates probability scores that accurately reflect the true probability of its predictions.

In Figure 6, we present the distribution of P(Yes) scores for both correct and incorrect Yes/No
decisions. Our key observations are as follows:

1. When the model is given detailed instructions and few-shot examples, it demonstrates poor
calibration. As illustrated in Figure 6(a), the distributions of P(Yes) scores for correct and
incorrect decisions do not show a clear distinction.

2. Conversely, when the model lacks detailed context and must rely on its internal beliefs to
make decisions, it exhibits improved calibration. In Figure 6(b), the peak of the distribution
for correct scores clearly deviates from that of incorrect scores.

3. After fine-tuning, the model displays significantly better calibration, as shown in Figures
6(c) and (d). Most correct decisions have P(Yes) scores of either 1 (indicating ”Yes”) or 0
(indicating ”No”), while the P(Yes) scores for incorrect decisions vary between 0 and 1.
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(a) Llama-3-8b with context (b) Llama-3-8b without context

(c) Llama-3-8b-sft with context (d) Llama-3-8b-sft without context

Figure 6: Distribution of the P(Yes) scores of the correct Yes/No and incorrect Yes/No. Llama-3-8b
is the model pre-fine-tuning and Llama-3-8b-sft is the model post-fine-tuning. Note that the scores
are collected on the training data in the Metatool benchmark.

C.4 META-COGNITION SCORES AT DIFFERENT LAYERS

We examine the meta-cognition scores at various layers in the model and visualize the results in
Figure 7. We focus on the meta-cognition scores at layers -2, -5, -8, -11, and -15 because these layers
exhibit the highest classification accuracy, where layer -1 refers to the last layer before the output.
Notably, the meta-cognition scores at different layers have distinct value ranges and slightly different
distributions. Therefore, it is not reasonable to simply average the scores from different layers as the
final score for a token, which has been a common approach in other research works based on RepE.
In this study, we use the meta-cognition score from the second-to-last layer as the final score, as this
layer demonstrates the highest classification accuracy and effectively differentiates between correct
and incorrect responses.
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Figure 7: Distribution of meta-cognition scores for the first token at different layers. The results are
collected using the Llama-3-8b model on the training data from the Metatool benchmark.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D PROBE TRAINING

D.1 DIFFERENT TRAINING STRATEGIES

Although it increases the length of the instructions and thus may degrade the signal we are detecting,
we found that it is much better to provide the model with the query in the instruction than solely
instruct the model to follow the ground truth explanations. Therefore, we include the queries in the
contrastive instructions below.

Figure 8: The classification accuracy of different probes trained with the query in the instruction and
without the query in the instruction. Training data size is fixed as 2048 in this experiment.

D.2 DIFFERENT SIZE OF TRAINING DATA

We further examine how the size of the training data affects the outcomes of the meta-cognition
probe. Specifically, we analyze the performance of the trained probes with varying sizes of training
data, as illustrated in Figure 9 and Figure 10. According to Equation 1, a sentence with 10 tokens
can be used to create 10 training data pairs of experimental prompts and reference prompts. Typ-
ically, a brief explanation of why or why not to use external tools/RAG corresponds to around 30
to 50 tokens. Thus, a training data size of 256 requires fewer than 10 queries and their associated
explanations.

Although different backbone models exhibit significantly varying classification accuracies—with
Llama-3-8b achieving the highest and Llama-3-70b the lowest—we found that only a small amount
of training data is sufficient to train a probe with near-optimal performance. We hypothesize that
this is due to the linear nature of the PCA methods adopted in RepE.

Figure 9: Training data size vs classification accuracy of meta-cognition probe in adaptive tool use.
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(a) Llama-3-8b-instruct (b) Mistral-7b-instruct-v0.3

Figure 10: Train data size vs classification accuracy of meta-cognition probe in adaptive RAG.

D.3 CONTRASTIVE INSTRUCTIONS FOR VARIOUS PROBES

We used the following instruction pair to collect contrastive data and train the honesty probe. Specif-
ically, we instructed the model to be both honest and untruthful when explaining its reasoning for
the necessity of tool use.

Contrastive Instructions for training Honesty Probe

Honest Instruction

Imagine you are an honest intelligent assistant explaining why you need or do not
need to use an external tool to respond to the following user query.

User Query: {query}

Answer:

Untruthful Instruction

Imagine you are an untruthful intelligent assistant explaining why you need or do
not need to use an external tool to respond to the following user query.

User Query: {query}

Answer:

Similarly, we instructed the model to exhibit both confidence and unconfidence when we trained the
confidence probe.
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Contrastive Instructions for training Confidence Probe

Confident Instruction

Imagine you are a confident intelligent assistant explaining why you need or do not
need to use an external tool to respond to the following user query.

User Query: {query}

Answer:

Unconfident Instruction

Imagine you are an unconfident intelligent assistant explaining why you need or do
not need to use an external tool to respond to the following user query.

User Query: {query}

Answer:

For the meta-cognition probe, we instruct the model to exhibit strong meta-cognition by being con-
stantly aware of its own limitations and capabilities and accurately assessing whether an external
tool is necessary. Conversely, with weak meta-cognition, the model is often unaware of its own
limitations and capabilities and struggles to assess the necessity of tool use.

Contrastive Instructions for training Meta-Cognition Probe

Strong Meta-Cognition Instruction in Adaptive Tool Use

Imagine you are an intelligent assistant with strong meta-cognition, constantly
aware of your own limitations and capabilities. You can accurately assess and ex-
plain whether you need to use an external tool to respond to the following user query.

User Query: {query}

Answer:

Weak Meta-Cognition Instruction

Imagine you are an assistant with weak meta-cognition, often unaware of your own
limitations and capabilities. You struggle to assess and explain why you need or do
not need to use an external tool to respond to the following user query.

User Query: {query}

Answer:

The meta-cognition instruction for Adaptive RAG is similar to that in the adaptive tool use setting,
with the only difference being that we replace the necessity of tool use with the necessity of RAG.
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Contrastive Instructions for training Meta-Cognition Probe in Adaptive RAG

Strong Meta-Cognition Instruction

Imagine you are an intelligent assistant with strong meta-cognition, constantly
aware of your own limitations and capabilities. You can accurately assess and
explain whether you need to perform Retrieval Augmented Generation (RAG) to
respond to the following user query.

User Query: {query}

Answer:

Weak Meta-Cognition Instruction

Imagine you are an assistant with weak meta-cognition, often unaware of your own
limitations and capabilities. You struggle to assess and explain why you need or
do not need to perform Retrieval Augmented Generation (RAG) to respond to the
following user query.

User Query: {query}

Answer:
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E PROMPTS

E.1 PROMPTS IN ADAPTIVE TOOL USE

We employ two types of prompts in our experiments: 1) prompts with context, which provide spe-
cific reasons for why LLMs may require external tools to complete user tasks. These prompts also
include five randomly sampled examples to assist the model in making decisions; and 2) prompts
without context, which are more concise and contain only the instruction and query. The exact
prompts are provided below. Note that the example queries are randomly sampled in the Metatool
benchmark and we follow their setup and don’t change the examples associated with queries.

Prompt with context.

You are an intelligent agent, and you need to constantly be aware of your own limitations. I
will provide you with a user’s query, and you should assess, based on your own capabilities,
whether you need to use external tools to better address the user’s query. Typically, there are
four reasons why you might need to use external tools:

• A. Solving issues with real-time or external data, databases, or APIs
• B. Handling specialized inputs/outputs
• C. Enhancing domain tasks beyond LLM’s capabilities
• D. User customization, personalization, and interaction

If you think it’s necessary to use external tools, please respond with “Yes”; otherwise, re-
spond with “No”. Additionally, you should provide a very brief explanation for your answer.
Here are some examples:

• Query: “Write an opinion piece about why diversity and inclusion is super impor-
tant for the tech industry. The essay should be targeted at ’tech bros’, and should
avoid alienating them, but instead appeal to their logic; it should explain how di-
versity and inclusion of women, immigrants, etc. could benefit them specifically.”
Answer: No

• Query: “Are there any loopholes that hackers can exploit on my website?” Answer:
Yes

• Query: “Plan a weekly lunch menu for a school. Write down a main dish, a car-
bohydrate side dish, a vegetable side dish, and a dessert for each day.” Answer:
No

• Query: “Can you break down the main points of this TED talk for me? Here’s the
YouTube link.” Answer: Yes

• Query: “How’s the weather in London right now?” Answer: No

User query: {query}

Answer:

Prompt without context.

You are an intelligent agent, and you need to constantly be aware of your own limita-
tions. I will provide you with a user’s query, and you should assess, based on your own
capabilities, whether you need to use external tools to better address the user’s query. If
you think it’s necessary to use external tools, please respond with “Yes”; otherwise, re-
spond with “No”. Additionally, you should provide a very brief explanation for your answer.

User Query: {query}

Answer:
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E.2 PROMPTS IN ADAPTIVE RAG

In adaptive RAG task, LLMs are typically not provided with any reasons or examples to help them
make a decision. Following this setting, we conduct the experiments in adaptive RAG without
providing context in the prompts as shown below.

Prompt without context.

Imagine you are an intelligent assistant with strong meta-cognition, constantly aware of
your own limitations and capabilities. Your task is to accurately assess and explain whether
you need to perform Retrieval Augmented Generation (RAG) to respond to the following
user query. If you determine that performing RAG is necessary, please respond with “Yes”;
otherwise, respond with “No”. Additionally, provide a very brief explanation for your
decision.

User Query: {query}

Answer:
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